Courses tagged with "Infor" (182)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2005-09-01
14 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory Nutrition Principles of Management

This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis.

Users may find additional or updated materials at Professor Carter's 3.016 course Web site.

Starts : 2004-09-01
11 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

The course presents a systematic approach to design and assembly of mechanical assemblies, which should be of interest to engineering professionals, as well as post-baccalaureate students of mechanical, manufacturing and industrial engineering. It introduces mechanical and economic models of assemblies and assembly automation at two levels. "Assembly in the small" includes basic engineering models of part mating, and an explanation of the Remote Center Compliance. "Assembly in the large" takes a system view of assembly, including the notion of product architecture, feature-based design, and computer models of assemblies, analysis of mechanical constraint, assembly sequence analysis, tolerances, system-level design for assembly and JIT methods, and economics of assembly automation. Class exercises and homework include analyses of real assemblies, the mechanics of part mating, and a semester long project. Case studies and current research are included.

Starts : 2004-01-01
13 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Infor Information control Information Theory International development Nutrition

This course introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on MATLAB®, MAPLE®, XESS™, and CAD. Emphasis is on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering.

This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto.

Starts : 2006-09-01
15 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.

Starts : 2004-02-01
14 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory Janux Nutrition

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments.

Professor Oral Buyukozturk thanks Tzu-Yang Yu, a graduate student at MIT, for his valuable assistance in preparing course documents.

Starts : 2004-02-01
17 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Starts : 2003-09-01
16 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory Janux Nutrition

1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.

Starts : 2014-09-01
14 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.

Starts : 2006-09-01
14 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course models multi-domain engineering systems at a level of detail suitable for design and control system implementation. Topics include network representation, state-space models; multi-port energy storage and dissipation, Legendre transforms; nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms; and control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission.

Starts : 2005-02-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Starts : 2015-02-01
9 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory Intellectual property Nutrition

This course develops and applies scaling laws and the methods of continuum and statistical mechanics to biomechanical phenomena over a range of length scales, from molecular to cellular to tissue or organ level.

Starts : 2003-09-01
10 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory Janux Nutrition

This course presents a rational basis for the preliminary design of motion-sensitive structures. Topics covered include: analytical and numerical techniques for establishing the optimal stiffness distribution, the role of damping in controlling motion, tuned mass dampers, base isolation systems, and active structural control. Examples illustrating the application of the motion-based design paradigm to building structures subjected to seismic excitation are discussed.

Starts : 2004-09-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials through problem sets and a project literature critique.

Starts : 2012-02-01
8 votes
MIT OpenCourseWare (OCW) Free Closed [?] Engineering Infor Information environments Information Theory International development Nutrition

Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Starts : 2007-02-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This graduate-level course provides a unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems.

Starts : 2014-09-01
18 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming.

Starts : 2015-02-01
15 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course is an introduction to numerical methods and MATLAB®: Errors, condition numbers and roots of equations. Topics covered include Navier-Stokes; direct and iterative methods for linear systems; finite differences for elliptic, parabolic and hyperbolic equations; Fourier decomposition, error analysis and stability; high-order and compact finite-differences; finite volume methods; time marching methods; Navier-Stokes solvers; grid generation; finite volumes on complex geometries; finite element methods; spectral methods; boundary element and panel methods; turbulent flows; boundary layers; and Lagrangian coherent structures (LCSs).

Prof. Pierre Lermusiaux is very grateful to the teaching assistants Dr. Matt Ueckermann, Dr. Tapovan Lolla, Mr. Jing Lin, and Mr. Arpit Agarwal for their contributions to the course over the years.

 

Starts : 2006-09-01
11 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory Introduction to Sociology Nutrition

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®.

Acknowledgements

The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.

Starts : 2002-02-01
11 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.

Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their mooring systems designed for hydrocarbon recovery from large water depths.

This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.022. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.24.

Starts : 2002-02-01
15 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.