Courses tagged with "Infor" (113)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2005-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

This course covers interpretations of the concept of probability. Topics include basic probability rules; random variables and distribution functions; functions of random variables; and applications to quality control and the reliability assessment of mechanical/electrical components, as well as simple structures and redundant systems. The course also considers elements of statistics; Bayesian methods in engineering; methods for reliability and risk assessment of complex systems (event-tree and fault-tree analysis, common-cause failures, human reliability models); uncertainty propagation in complex systems (Monte Carlo methods, Latin Hypercube Sampling); and an introduction to Markov models. Examples and applications are drawn from nuclear and other industries, waste repositories, and mechanical systems.

Starts : 2004-02-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

This course explores the theory of self-assembly in surfactant-water (micellar) and surfactant-water-oil (micro-emulsion) systems. It also introduces the theory of polymer solutions, as well as scattering techniques, light, x-ray, and neutron scattering applied to studies of the structure and dynamics of complex liquids, and modern theory of the liquid state relevant to structured (supramolecular) liquids.

Starts : 2004-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This class includes a brief review of applied aerodynamics and modern approaches in aircraft stability and control. Topics covered include static stability and trim; stability derivatives and characteristic longitudinal and lateral-directional motions; and physical effects of the wing, fuselage, and tail on aircraft motion. Control methods and systems are discussed, with emphasis on flight vehicle stabilization by classical and modern control techniques; time and frequency domain analysis of control system performance; and human-pilot models and pilot-in-the-loop controls with applications. Other topics covered include V/STOL stability, dynamics, and control during transition from hover to forward flight; parameter sensitivity; and handling quality analysis of aircraft through variable flight conditions. There will be a brief discussion of motion at high angles-of-attack, roll coupling, and other nonlinear flight regimes.

Starts : 2002-02-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Space Systems Engineering (16.83X) is the astronautical capstone course option in the Department of Aeronautics and Astronautics.  Between Spring 2002 and Spring 2003, the course was offered in a 3-semester format, using a Conceive, Design, Implement and Operate (C-D-I-O) teaching model. 16.83X is shorthand for the three course numbers: 16.83, 16.831, and 16.832. The first semester (16.83) is the Conceive-Design phase of the project, which results in a detailed system design, but precedes assembly.  The second semester (16.831) is the Implement phase, and involves building the students' system.  The final semester (16.832) is the Operate phase, in which the system is tested and readied to perform in its intended environment.

This year's project objective was to demonstrate the feasibility of an electromagnetically controlled array of formation flying satellites.  The project, "EMFFORCE", was an extension of the first C-D-I-O course project, "SPHERES", which ran from Spring 1999 through Spring 2000, and demonstrated satellite formation flying using gas thrusters for station-keeping.  The whole class works on the same project, but divides into smaller subsystem teams, such as power, metrology, and structures, to handle design details.

Starts : 2005-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This class focuses on chemical rocket propulsion systems for launch, orbital, and interplanetary flight. It studies the modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse, and nozzle flows including real gas and kinetic effects will also be covered. Other topics to be covered include structural constraints, propellant feed systems, turbopumps, and combustion processes in solid, liquid, and hybrid rockets.

Starts : 2008-02-01
9 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information environments Information Theory JaverianaX Nutrition Reading assessment reading comprehension

This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence, and stationary waves among other problems. The quasi-geostrophic approximation is derived, and the resulting equations are used to examine the hydrodynamic stability of the circulation with applications ranging from convective adjustment to climate.

Starts : 2006-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Interns Nutrition

This course uses lectures and discussion to introduce the range of topics relevant to plasma physics and fusion engineering. An introductory discussion of the economic and ecological motivation for the development of fusion power is also presented. Contemporary magnetic confinement schemes, theoretical questions, and engineering considerations are presented by expert guest lecturers. Students enrolled in the course also tour the Plasma Science and Fusion Center experimental facilities.

Starts : 2005-09-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.

Starts : 2003-09-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

Satellite Engineering introduces students to subsystem design in engineering spacecraft. The course presents characteristic subsystems, such as power, structure, communication and control, and analyzes the engineering trades necessary to integrate subsystems successfully into a satellite. Discussions of spacecraft operating environment and orbital mechanics help students to understand the functional requirements and key design parameters for satellite systems.

Starts : 2006-09-01
9 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Before 1300: Ancient and Medieval History Infor Information environments Information Theory Nutrition

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Starts : 2010-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Diencephalon Infor Information environments Information Theory Nutrition

This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases.

Starts : 2005-09-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This class addresses some of the important issues involved with the planning, development, and implementation of lean enterprises. People, technology, process, and management dimensions of an effective lean manufacturing company are considered in a unified framework. Particular emphasis is placed on the integration of these dimensions across the entire enterprise, including product development, production, and the extended supply chain. Analysis tools as well as future trends and directions are explored. A team project is a key component of this subject.

Starts : 2010-09-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course will teach fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, you should be able to design controllers using state-space methods and evaluate whether these controllers are robust to some types of modeling errors and nonlinearities. You will learn to:

  • Design controllers using state-space methods and analyze using classical tools.
  • Understand impact of implementation issues (nonlinearity, delay).
  • Indicate the robustness of your control design.
  • Linearize a nonlinear system, and analyze stability.

Other Versions

Related Content

Starts : 2004-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course addresses the architecting of air transportation systems. The focus is on the conceptual phase of product definition, including technical, economic, market, environmental, regulatory, legal, manufacturing, and societal factors. It centers on a realistic system case study and includes a number of lectures from industry and government. Past examples include: the Very Large Transport Aircraft, a Supersonic Business Jet, and a Next Generation Cargo System. The course identifies the critical system level issues and analyzes them in depth via student team projects and individual assignments. The overall goal of the semester is to produce a business plan and a system specifications document that can be used to assess candidate systems.

Starts : 2007-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).

Both lunar surface telescopes as well as orbital locations should be considered.

The second half of the class will then pick 1-2 of the top-rated architectures for a lunar telescope facility and develop the concept in more detail and present the detailed design at the Critical Design Review (CDR). This should not only sketch out the science program, telescope architecture and design, but also the stakeholder relationships, a rough estimate of budget and timeline, and also clarify the role that human explorers could or should play during both deployment and servicing/operations of such a facility (if any).

Starts : 2005-09-01
9 votes
MIT OpenCourseWare (OCW) Free Social Sciences Infor Information control Information Theory Nutrition Principles of Management

This Freshman Advising Seminar surveys the many applications of magnets and magnetism. To the Chinese and Greeks of ancient times, the attractive and repulsive forces between magnets must have seemed magical indeed. Through the ages, miraculous curative powers have been attributed to magnets, and magnets have been used by illusionists to produce "magical" effects. Magnets guided ships in the Age of Exploration and generated the electrical industry in the 19th century. Today they store information and entertainment on disks and tapes, and produce sound in speakers, images on TV screens, rotation in motors, and levitation in high-speed trains. Students visit various MIT projects related to magnets (including superconducting electromagnets) and read about and discuss the history, legends, pseudoscience, science, and technology of types of magnets, including applications in medicine. Several short written reports and at least one oral presentation will be required of each participant.

Starts : 2004-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

Human Supervisory Control of Automated Systems discusses elements of the interactions between humans and machines.  These elements include: assignment of roles and authority; tradeoffs between human control and human monitoring; and human intervention in automatic processes.  Further topics comprise: performance, optimization and social implications of the system; enhanced human interfaces; decision aiding; and automated alterting systems.  Topics refer to applications in aerospace, industrial and transportation systems.

Starts : 2007-02-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

This course discusses MHD equilibria in cylindrical, toroidal, and noncircular tokamaks. It covers derivation of the basic MHD model from the Boltzmann equation, use of MHD equilibrium theory in poloidal field design, MHD stability theory including the Energy Principle, interchange instability, ballooning modes, second region of stability, and external kink modes. Emphasis is on discovering configurations capable of achieving good confinement at high beta.

Starts : 2008-02-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Interns Nutrition

Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor.

Starts : 2003-02-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

A presentation of the fundamentals of modern numerical techniques for a wide range of linear and nonlinear elliptic, parabolic and hyperbolic partial differential equations and integral equations central to a wide variety of applications in science, engineering, and other fields. Topics include: Mathematical Formulations; Finite Difference and Finite Volume Discretizations; Finite Element Discretizations; Boundary Element Discretizations; Direct and Iterative Solution Methods.

This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5212 (Numerical Methods for Partial Differential Equations).

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.