Courses tagged with "Nutrition" (219)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2005-02-01
13 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information environments Information Theory Nutrition

This course serves as an introduction to major topics of modern enumerative and algebraic combinatorics with emphasis on partition identities, young tableaux bijections, spanning trees in graphs, and random generation of combinatorial objects. There is some discussion of various applications and connections to other fields.

Starts : 2008-09-01
16 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information environments Information Theory Nutrition

In this course students will learn about Noetherian rings and modules, Hilbert basis theorem, Cayley-Hamilton theorem, integral dependence, Noether normalization, the Nullstellensatz, localization, primary decomposition, DVRs, filtrations, length, Artin rings, Hilbert polynomials, tensor products, and dimension theory.

Starts : 2003-09-01
13 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information control Information Theory Nutrition

This course explored topics such as complex algebra and functions, analyticity, contour integration, Cauchy's theorem, singularities, Taylor and Laurent series, residues, evaluation of integrals, multivalued functions, potential theory in two dimensions, Fourier analysis and Laplace transforms.

Starts : 2003-02-01
12 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Before 1300: Ancient and Medieval History Infor Information environments Information Theory Nutrition

6.844 is a graduate introduction to programming theory, logic of programming, and computability, with the programming language Scheme used to crystallize computability constructions and as an object of study itself. Topics covered include: programming and computability theory based on a term-rewriting, "substitution" model of computation by Scheme programs with side-effects; computation as algebraic manipulation: Scheme evaluation as algebraic manipulation and term rewriting theory; paradoxes from self-application and introduction to formal programming semantics; undecidability of the Halting Problem for Scheme; properties of recursively enumerable sets, leading to Incompleteness Theorems for Scheme equivalences; logic for program specification and verification; and Hilbert's Tenth Problem.

Starts : 2003-02-01
15 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

Topics in surface modeling: b-splines, non-uniform rational b-splines, physically based deformable surfaces, sweeps and generalized cylinders, offsets, blending and filleting surfaces. Non-linear solvers and intersection problems. Solid modeling: constructive solid geometry, boundary representation, non-manifold and mixed-dimension boundary representation models, octrees. Robustness of geometric computations. Interval methods. Finite and boundary element discretization methods for continuum mechanics problems. Scientific visualization. Variational geometry. Tolerances. Inspection methods. Feature representation and recognition. Shape interrogation for design, analysis, and manufacturing. Involves analytical and programming assignments.

This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.472J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.158J.

Starts : 2008-09-01
6 votes
MIT OpenCourseWare (OCW) Free Engineering Customer Service Certification Program Infor Information environments Information Theory Nutrition

This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications.

Note: This course was previously called "Mathematical Methods for Engineers I."

7 votes
Saylor.org Free Closed [?] Mathematics Evaluation Nutrition Taking derivatives

This course is designed to introduce you to the study of Calculus.  You will learn concrete applications of how calculus is used and, more importantly, why it works.  Calculus is not a new discipline; it has been around since the days of Archimedes.  However, Isaac Newton and Gottfried Leibniz, two 17th-century European mathematicians concurrently working on the same intellectual discovery hundreds of miles apart, were responsible for developing the field as we know it today.  This brings us to our first question, what is today's Calculus?  In its simplest terms, calculus is the study of functions, rates of change, and continuity.  While you may have cultivated a basic understanding of functions in previous math courses, in this course you will come to a more advanced understanding of their complexity, learning to take a closer look at their behaviors and nuances. In this course, we will address three major topics: limits, derivatives, and integrals, as well as study their respective foundations and a…

4 votes
Saylor.org Free Closed [?] Mathematics Evaluation Nutrition Taking derivatives

This course is the second installment of Single-Variable Calculus.  In Part I (MA101) [1], we studied limits, derivatives, and basic integrals as a means to understand the behavior of functions.  In this course (Part II), we will extend our differentiation and integration abilities and apply the techniques we have learned. Additional integration techniques, in particular, are a major part of the course.  In Part I, we learned how to integrate by various formulas and by reversing the chain rule through the technique of substitution.  In Part II, we will learn some clever uses of substitution, how to reverse the product rule for differentiation through a technique called integration by parts, and how to rewrite trigonometric and rational integrands that look impossible into simpler forms.  Series, while a major topic in their own right, also serve to extend our integration reach: they culminate in an application that lets you integrate almost any function you’d like. Integration allows us to calculat…

4 votes
Saylor.org Free Closed [?] Mathematics Evaluation Nutrition Taking derivatives

This course is an introduction to linear algebra.  It has been argued that linear algebra constitutes half of all mathematics.  Whether or not everyone would agree with that, it is certainly true that practically every modern technology relies on linear algebra to simplify the computations required for Internet searches, 3-D animation, coordination of safety systems, financial trading, air traffic control, and everything in between. Linear algebra can be viewed either as the study of linear equations or as the study of vectors.  It is tied to analytic geometry; practically speaking, this means that almost every fact you will learn in this course has a picture associated with it.  Learning to connect the facts with their geometric interpretation will be very useful for you. The book which is used in the course focuses both on the theoretical aspects as well as the applied aspects of linear algebra.  As a result, you will be able to learn the geometric interpretations of many of the algebraic concepts…

5 votes
Saylor.org Free Closed [?] Mathematics Customer Service Certification Program Evaluation Navigation+SAP Nutrition Taking derivatives

In this course, you will look at the properties behind the basic concepts of probability and statistics and focus on applications of statistical knowledge.  You will learn about how statistics and probability work together.  The subject of statistics involves the study of methods for collecting, summarizing, and interpreting data.  Statistics formalizes the process of making decisions, and this course is designed to help you use statistical literacy to make better decisions.  Note that this course has applications for the natural sciences, economics, computer science, finance, psychology, sociology, criminology, and many other fields. We read data in articles and reports every day.  After finishing this course, you should be comfortable evaluating an author's use of data.  You will be able to extract information from articles and display that information effectively.  You will also be able to understand the basics of how to draw statistical conclusions. This course will begin with descriptive statistic…

4 votes
Saylor.org Free Closed [?] Mathematics Evaluation Mathematics.htm%25252525253Fdatetype%25252525253Dalwaysopen&.htm%252525253Fcategoryid%252525253D2.ht Nutrition Taking derivatives

This course has been designed to provide you with a clear, accessible introduction to discrete mathematics. Discrete mathematics describes processes that consist of a sequence of individual steps (as compared to calculus, which describes processes that change in a continuous manner). The principal topics presented in this course are logic and proof, induction and recursion, discrete probability, and finite state machines. As you progress through the units of this course, you will develop the mathematical foundations necessary for more specialized subjects in computer science, including data structures, algorithms, and compiler design. Upon completion of this course, you will have the mathematical know-how required for an in-depth study of the science and technology of the computer age.

Starts : 2004-09-01
7 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information environments Information Theory Nutrition

This is the first semester of a two-semester sequence on Differential Analysis. Topics include fundamental solutions for elliptic; hyperbolic and parabolic differential operators; method of characteristics; review of Lebesgue integration; distributions; fourier transform; homogeneous distributions; asymptotic methods.

Starts : 2016-02-01
7 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information environments Information Theory Nutrition

In this course, we study elliptic Partial Differential Equations (PDEs) with variable coefficients building up to the minimal surface equation. Then we study Fourier and harmonic analysis, emphasizing applications of Fourier analysis. We will see some applications in combinatorics / number theory, like the Gauss circle problem, but mostly focus on applications in PDE, like the Calderon-Zygmund inequality for the Laplacian, and the Strichartz inequality for the Schrodinger equation. In the last part of the course, we study solutions to the linear and the non-linear Schrodinger equation. All through the course, we work on the craft of proving estimates.

 

17 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information control Information Theory Nutrition

The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.

Course Format


Click to get started. This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:

  • Lecture Videos by Professor Arthur Mattuck.
  • Course Notes on every topic.
  • Practice Problems with Solutions.
  • Problem Solving Videos taught by experienced MIT Recitation Instructors.
  • Problem Sets to do on your own with Solutions to check your answers against when you're done.
  • A selection of Interactive Java® Demonstrations called Mathlets to illustrate key concepts.
  • A full set of Exams with Solutions, including practice exams to help you prepare.

Content Development

Haynes Miller
Jeremy Orloff
Dr. John Lewis
Arthur Mattuck

 

Other Versions

Related Content

Starts : 2010-02-01
12 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information control Information Theory Nutrition

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.

Starts : 2008-09-01
11 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information control Information Theory Nutrition

This course is an introduction to differential geometry. The course itself is mathematically rigorous, but still emphasizes concrete aspects of geometry, centered on the notion of curvature.

Starts : 2009-09-01
11 votes
MIT OpenCourseWare (OCW) Free Mathematics Customer Service Certification Program Infor Information environments Information Theory Nutrition

Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations appear in many contexts: integrable systems (Calogero-Moser and Ruijsenaars models), algebraic geometry (Hilbert schemes), orthogonal polynomials, Lie theory, quantum groups, etc. In this course we will review the basic theory of DAHA and their representations, emphasizing their connections with other subjects and open problems.

Starts : 2015-03-02
88 votes
Coursera Free Closed [?] Life Sciences English BabsonX Brain stem Customer Service Certification Program Nutrition

An introduction to dynamical modeling techniques used in contemporary Systems Biology research.

Starts : 2012-09-01
10 votes
MIT OpenCourseWare (OCW) Free Business Infor Information control Information Theory Nutrition Structural+engineering

Game Theory, also known as Multiperson Decision Theory, is the analysis of situations in which the payoff of a decision maker depends not only on his own actions but also on those of others. Game Theory has applications in several fields, such as economics, politics, law, biology, and computer science. In this course, I will introduce the basic tools of game theoretic analysis. In the process, I will outline some of the many applications of Game Theory, primarily in economics.

Starts : 2016-10-03
No votes
edX Free Closed [?] Mathematics English African+American+Studies Business Nutrition Structural engineering

A wondrously romantic belief is that brilliant thinkers magically produce brilliant ideas: Einstein jostles his hair and relativity falls out. We can enjoy these fanciful visions of leaps of genius, but we should not be fooled into believing that they’re reality.

Brilliant innovators are brilliant because they practice habits of thinking that inevitably carry them step by step to works of genius. No magic and no leaps are involved.

Professor Starbird will discuss how habits of effective thinking and creativity can be taught and learned through puzzles and mathematics. Anyone who practices these habits of mind will inevitably create new insights, new ideas, and new solutions.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.